
DOCUMENT RESUME

ED 228 316 TM 830 242

AUTHOR Blumberg, Carol Joyce; And Others
TITLE Comparison of Methods of Data Analysis in

Nonrandomized Experiments.
PUB DATE Apr 83
NOTE' 3lp.; Paper presented at the Annual Meeting of the

American EduCational Research Association (67th,
Montreal, Quebec; April 11-15, 1983).. Research ,

A supported in part by a grant from the Univer ity of
Delaware Research Foundation.

PUB TYPE Speedles/Conference Papers (150) -- Reports
Research/Technical (143)
-

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Comparative Analysis; *Control Groups; *Data

Analysis;` Data Collection; Evaluation Kett:ads;
Mathematical Models; *Research Design; Research
Methodology; *Simulation

'IDENTIFIERS *Monte Carlo Studies; *Nonrandom Selection

ABSTRACT
Various methadehave been suggested for the analysis

'of data collected in research settings where random assignment of
subjects to grpups has not occurred. For the purposes of this paper
the set of allowable nonrandomized designs is made up of those
research designs where data are collected"for one-or more groups of

subjects at twa or more time points on some measure of interest.
Further, none of the groups need be a control group. The main purpose
of the paper is to describe end report the results of a Monte Carlo
simulation study that was carried out to determine which of several
data analysis.methods developed.by either Blumberg and Porter or

Olejnik yields the best point estimates of treatment effects under
various constraints. When growth pn the measure of interest is linear
over time,,Blumberg and Porter's 4mthods provide the best estimates.
When growth is exponential.over time, the results are mixed: under,
some constraints Olejnik's methodvis best, but usually Blumberg and
Porter's methods provide the best estimates. (Author)

*******************************************************************-****
Reproductions supplied by EDRS are the best.that.,can be made .

from the original document.
****************ic*****************A************************************



4.

Comparison of Methods of Data Analysis

in Nonrandomized Expe4ments

Carol 'Joyce Blumberg

Sigurd L. Andersen', Jr.

Roberta E. G. Murphy

Linda D. Waters

University of D'elaware

Prined in U.S.A.

7

A

U S. DERARTMENt OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

X, The document has been reprOduCed as
recemed from the person or oroarszahon

onynahnu
Mmor changes have been made to improve

reproduchon quaint,

. Points of soevi or optmons stated in the docu

ment do not necessaMy represent officialNIE

position Of polIcy A

"PERMISSION TO REPRODUCE THIS %
MATERIAL HAS BEEN GRANTED BY

C j 84.4A41;q4?

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Paper presented at the 1983 Annual Meeting of the American
Educational Research Association, folontreal, April 1983.

, .

The research for this paper was supported in part by a grant from,
the University of Delaware Research FOundation to Cax.o1 Joyce

Blumberg. -

2



Abstract

Various method's have been suggested for the analysis of

data collected in research settings where random assignment

of subjects to groups has not occurred. For the purposes of

this paper the set of allowable nonrandomized designs is-

made up of those research designs where data are collected'

for one or more groups of subjects at two or more ime points

on some measure of interest. Further, none of the groups'

need be a control group. The main purpose of the'paper is

to describe and report the results of a Monte Carlo simula-

tion study that was carried out to determine' which of several

data analysis method^s developed by either Bluniberg and Porter

or Olejnik

1

ields the best point estimates of treatment

effects und r various constraints. When growth oh the measure

of Anterest is lineak over time Blumberg and Porter's methods

provide the best eStimates. When growth is exponential over

time the results are mixed: uncl,er some constraints Olejnik's

method is best but usually Blumberg and Porter's methods

provide the best estimates.
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Various methods have been suggested for the analysis of

data collected in revarch settings where random assignment

.of subjects to grodps has not occurred. For the p(Irposes of

this paper the set of allowable nonrandomiied designs is made

.up of those research designs where cata,are collected for one

or more groups of subjects at two or more time points on some
4

measure of interest. Further, none of the groups need be a

control group. The designs making up this set are most often

referrecito as either nonequivalent control group designs

and/or interrupted time series designs (Cook & Campbell, 1979)

The main purpos of this paper is to report the results of a

Mapte Carlo siMulation study that was:carried out by the au-

thors.tosdetermine which of the several data analysis methods

to be described in the'next section results in the best point

estimators of treatment effects under the various conditions

studied.

paper

Data Analysis Methods

All of the data anilysis methods to be compared in this

assume some type of continuous natural growth model

which is supposed to describe the changes(i.e., growth) in
,

the measure of interest dver time. tlumberg (along with Porter)
, . ., -

. ,

% . . . .

has dOveloped several methods for deriving point'eitimates
O.

of treatment effects (Blumberg, 1982a; BluMberg, 1982b;

Blumberg &.Porter, 1982) . All of.these methods assume the

4

ON



-2-

folroWing odel ofigrowth over time:

1
! '

* . *
Y..(t) =

g
.(t).Y..(t

1
) + h.(t) + a.(t)

3 3

and
Y..(t) = + ;1 ] 1 ] 1 ]

(1)

. where Y
ij

(t), Y
ij

(t) and e
ij

(t) represent the true scores,

observed scores, and errors of measurement, respec-

tively, for the ith indiviudal in the jth group, on

'the measure of interest;

g(t) and h.(t)are continuous functions;
3

a,(t)- represents the population treatment effect

fo'r the jth groUp;

and t
1

is an arbitrary time point.

Further assumptions are:

(1) Classical measurement theory holds. ,That is, for

eachtimet,yt)ande.(t) are uncorrelated apd E(eij(t)) = 0.
a

and (2) Treatmentleffects are additive. The exPression

.*
g (t).Y. (t) + h(t) represents the natural growth portion of

thit class df models and ,represents any natural grOwth situation

where there is a correlation within each group between true

scores at any two points in time. Finally, thl'treatment.effects,

1
as defined-by the a (t)' in the system of equations (1), are

-

not the same as the usual definition of treatment effects.

4
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Let a(t) be the grand mean of the a.(t)'s.. The usual definition

qf a treatment.effect Eb given by a(t) - a(t).

All that is required in order apply Blumberg and Porter'A

methdds is that the functional forms Of the h,(t)'s are known

(e.g., hl(t) d's a logarithmic function of the form

h
1
(t) = 1 (c.(t-t

1
) + 1), where b and c are constants, possibly

unknown; (t) is. a linear function of the form h
2
(t) = c.(t-t

1
)

whert c is some constant, possibly unknown; etc). :In this paper

three of Blumberg and Porter's methods will be described,and

used in the simulation study. The reason for not discussing

the remainder of their methods is,that the remaining methods

' L

are not alpplicable under the conaitions imposed for this par-

ticular simulation' study.

Blumberg and Porter's first method requires that the data

analysthaveknowledgeofthefunctionalformsofthe
'3

.(t)'s
3

.

and h.(t)'s. It further requres that prdtest observations

under natural growth conditions are available on the measure

of interest at at least M time points, where M is the*maxiihum

'of (i) two more than the number of unknown constants in'the

functional form expregsion for gi(t); and (ii) two more than'

the.number of unknown constants in the functional form expres-

si.clgfor h.(t). For convenience, this method will be called

Method A and, p will denote the number of pretest time points.
,

6,
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If one considers the

pretest points, then

-4-

system of'equations (1) for each of the p

the structIld model depicted in Figure 1

'Can be set up relating

time points. In this

the pretest olAervations at the various
;

f ure and 14 the remainder of the 'paper,

without loss of generality, the j subscript tepresenting group

'membership is dropped. This structural equations model contains

many unknown parameters, namely g(t2), g(t3), , g(tp), h(t2),

h(t
3
), h(t ), the variance of the true scores at time t

and'the variances of the errors of Measurement at t t
1, 2'

t^
p-1'

and .tp.

.

t )

Y (t
2)

e(t
2) .

e(t
3

)

t
4
) < e(t

4
)

Y (t
. P 1

e(t )
p-1

Y (t ) 4 e(t )

Figure 1

Pictorial representation of the structural model

e*1
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a

To implement Method A it'is necesSary to obtain maximum

likelihood estimates of these unknown parameters. But, 'the .

structural'model'is overidpntified and hence does pot have a

closed solution for the maximum likelihood estimates of the

perameters. Consequently, LISREL (JOreskog & SOrbom, 1978)

or some other maximum likelihood structural equations computer

program must be used to obtain the maximum likelihood estimates.

The Appendix gives the LISREL IV input strgam corresponding
,.

to Figure 1. Let g(t) 'represent the obtained maximum like-

lihocid estimate of g(t) for kr= 2,3,...,.p . The maximum

likelihood estimates of'the h(t
k
)'s for k=23,...,p are obtained

-
.- .---- ; ....^.

by using h(tk) = Y(tk) - g(ti1?.-4E1). The g(tk)'s and the
.:,

.1
.

h(t
k
)'s thus provide estimates mfor the true values of g(t) and

.

h(t), resActively, at the pretest time points. , The method of

teast'squares is then used to obtain estiMates of the unknown

constants inthe functional form expressions for g(t) and h(t).

For example if g(t) = b-c(t-t1) + (1 -:b), then the estimates

of b and c are those values which minimize the quantity

r (g(t;c) + (lv- b)))2 .

k=2 ,

A -

New functions, labelled g(t) and 8(t) are formed hy substituting
. e

the estimates of the unknown constants,that were obtaiiTed using

the proceis just described, back into the functional form

6
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expressions for g(t) and h(t). For example, if g(t) =

4.4

.

(1 - b) an b = 1.45 and C = L7, then g(t) = .45 .

Point estimates of Xreatment effects are firially given:under

'Method A by

.!^
a (t) = Y(t) - (g(t)-4. n(t)) .

Blumberg and Porter's second method, to-be.called Method B,_

depends kipon assuming that the'reliability of Y4 the measure

of interest, is constant over time and upon having knowledge

of the exct nature of h(t) (e.g., knowing.that h(t) = 3-t or

h(041= log3[4(t-'1)7], efc.] and requires observations at onlir

one pretest time point, namely tl. Under Method B, point

estimates of treatment effects are given by, where
i

.

sents the standard deviation of*Y(t),

a
B
(t) = Y(t)

(t)
Y .Y(t

1
) + h(t)

/-.

S (' t

1
)

Y

S (t) repre7

Blumberg and Porter's third method, to be called Method C,

depends upon assuming that the reliability of Y is constant

oVer time and upon having knowledge of the functional forms of

g(t) and h(t). Further, both g(t) and h(t) can each only have

one unknown constant .(e.g., g(t) = b-(t-t1) + 1 and h(t)

log3(c.(t-t1)
7
)). Method C also.requires that pretest obser-

vations are available at two pretest time points, say t1 and

t
2

. This method is a combination of some aspects of Methods

0,
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to

yt2)
A and B. Ugder Method C, g(t) can be estimated by

Sy(t1)

Call this estimator of g(t2) by the name g(t2). The:value

of h(t2) is then sstilated by using h(t2) = Y(t2) g(t2).Y(t1).

The equations g(t2) = g(t2) and h(t2) = h(t2) are then solved

for the unknown constants: These solutions provide estimators

of the unknown constants.. For example, if g(t) = b.(t t1) + 1,

S
Y
(t

2
)

S
Y
(t

1
)

then the equation b.(t
2

t
1

) + 1 is solved for b

if,Sv(t1)

.yielding b 4/(t2-t1). Once the estimates of the'
.SY(t11

unknown constants are obtained,snew functions labelled g(t) and

h(t) are formed, as in Method A, by substitutirig the estimates

of the unknwon constants into the functional form expressions

for g(t) and h(t). Point estimates of treatment effects are

then given by

A

ac(t) = Y(t) [g(t)*Y(t1) + h(t)3

Olejnik. (1977) assumes the following model for the mean

population growth over time on the measure of interest:

and

(t) = t + 11-1.ty(t1) +

(t) = (t) (t) ,

where lyt) is the population mean for Y
*
(t). Hence, blejnik

requires that the pdpulation mean natural growth over time be

i
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linear while Blumberg and Porter allow natural growth to follow

any continuous function. 'Olejnik, however, does not reauire

the assumption of a correlation of +1 between true score's at

any two points in time, as is iequired by Blumberg and PoAer's

4010

model of natural growth. Olejnik's method, as did Blumberg and

Porter's Method C, requires observations to be available at

exactly two pretest timd lioints, namely t1 and t2. Under

Olejnik'§ method, the point estimators of treatxne'nt effects

are given by

,e. - t
1a

0
(t) = Y(t) Y(t

1
) - [Y(t

2
) Y(E-1 )]

t
2
- t

All of the four methods just described have some unsolved

problems associated with theM.. The methods develCped by Blum-

berg and Porter are based on maximum likelihood estimation

and/or the use of ratios of standard deviations. Both maximum

likelihood techniques and estimators based on ratios of standard

deviations are known to_often lead to-biased, .although con-

sistent, estimators. One unsolved problem is whether each of

Blumb5g and Porter's ,rrethods lead to estimators whose bias is

at an acceptable,ot unacceptable level. Further, nothing is

known about the standard errors of the estimators generated by

these methods. Olejnik's method has only been studied when

the population natural growth pattern was taken to be linear.

over time. rt can easily be shown by elementary algebra and



statistics that when population mean growth is linear that

Olejnik's method produces unbiased estimates of treatment

effedti. Olejnik (1977), studied the standard error of his

method forA.inear men population growth under various' con-

straints on the errors of measurement. The bias and standard

error of OlejniMs method have not, hOwever, been studied

for non-linear mean population growth. The computer simula-

Ition study to be described presently, thus, had several.

purposes:

(i) to study the bias of Blumberg and Porter's Methods

A, B, and C and Olejnik's method under various natural growth

formulations;

(ii) to study the standard errors of the four methods;

(iii) to compare the estimates obtained under the four

methpds;
r I

and (iv) to make recommendations for the use of these methods

data sets.

/Tfiere i only one other class of methods known to the authors

-f,.iby which one can obtain point estimates of treatment effects.

This class of methods which was developed by Strenio, Bryk, and

Weisberg (Bryk, Strenio, & Weisberg, 1980; Strenio, Weisberg, &

--Bryk, in press) is based on the ideas of Empirical Bayes esti=

mation. The use of their class of methods deffiands a.great deal

of mathematical and statistical sophistication on the part of

the_data ahalyst. Hence, even though. Strenio, Bryk, st'Weisberg
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hive produced,an excellent class of-methods, their methods we're

not included in this Simulation study because of their com=.

pleXity,

,
Set Up 6f Simulation Study

One thousand two hundred data set.4 were generated in the

following manner. ,Fiist, the cannesi program.NRAN31 was uged

.to ,generate 13 stan ard normial randorg deviates for each.of

25 individuals. This,prbgram and all remaining programs men-
.

tioned in this paper were rpn on the Burroughs 7700.1tomputer

at the University of Delaware. A base true score, for each

individual.was established by adding 5 to the first standard

normal random deviate generated for each individual. With-,

out loss of-generality, this time point was set equal to

= 1. Two.different sets of individuals' true scOres under

natural growth Over time were generated at 11 additional

time points, which were taken to be equally spaced at td2,3,
*. -

..., 11, and 12 , using Y (t) F g(t).Y (1) +.h(t) where

g(t).and h(t) were certain specified functions. The first

set of true scores was.generated by setting g(t) = .5(t + 1

and h(t) = The second set,of true scores was

generated using g(t) = t-1 + .3 and h(t)0 . Next,

it was assumed that the reliability of Y-Was ,constant across

time. Three different values were taken for this ieliabilitY:

'.5 , .7', and .9 . For each of these reliabilitx Nialues the

13



second through thirteenth standard normal random deviates gen-

erated at theiarst step were used to,add on errors of measure-

ment to the true scores in order to generat9 observed scores

with the Aquired relia bility malues. Thus, for each set of'

25 individuals,.six different dat eta were generated. ,The

properies of the six data sets are enumerated below:
will

(1) The first data set, which^be referredto as .5 Linear,

was generated using g(tY = + 1, h(t) = .-t, and a

reliability of .5 .

(2) The seconil data set, which will be referred to as .7

Linear, was generated using get) = .5(t-1) + 1,.h(t) =

and a relibility of .70.
-

(3) The third data set, which will be referred to as .9

Linear, was generated using g(t) = .5(t-1) + 1, tat) =

and a reliability 'of .9 . .

(4) The fourth data set, .which will be referred to as .5

Exponential, was generated using g(t) =
t-1 + .3,

h(t) E 0, and &reliability of .5
r

(5) The fifth data set, which will be referred to as .7

'Exponential, was gen rated using g(t) = .7,(1.2)
t-1 +

h(t) E 0, and a rel ility of .7 .

(6) The sixth data set, which will be referred to as .9

Exponential, was generated 901.ng g(t) =
t-1

A- .3,

h()E 0, and a reliability of .9 .
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=

The Procedure just described in the preceding paragraph

'was.repeated 200 times yielding a total of 1200 simulated data

sets. Notice that when the data sets,were generated no treat-

ment effects were entered into the data.. Hence, when the four

methods described in the last section are used to estimate

a

treatment effects, the calculated values of the estimated treat-

ment effects do in faCt reprebent the bias in thmethods_ because

the theoretical valves of all'treatment effects were set to

zero.

For the .5 Linear, .7 Linear, and ,9 Linear data sets the

estimates of treatmerit effects for the various methods were

'calculated in the folloWing manners. For Method A the time

points t=1,2,3,4,5, and 6 were taken as the.pretest time points.

The simulated observed scores for each data set corresponding

to these six time points,were entered into the LISREL program

illustrated in the Appendix, The LISREL 'estimates of GA(1,1),

GA(2,1), GA(3,1), GA(4,1), and GA(5,1) were then used as the

maximum likelihood estimates of g(2), g(3), g(4), g(5), and

1(6), .respectively. It was then*assumed that g(t) = b-(t.----1)

+ 1 and that h(t) = C-(t -1). The method of least squares

was then used to estimate b and'c. In this case, because'both
A

g(t) and h(t) are linear,-closed 6 and c are

available and are given by 6,=(8 - 15)/55 and by C =

A
(-277) + 2711) + 377) + 4Y-(5) + 577) 4.YTT))/55, where
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Q = gA?) + 2.g(3) + -g(4)-+ 4.g(5) + 5.-61g) Finally, a
A
(t)

was calculated for t=7,8,9,10,11, and 12 using a (t) =

l. A

Y(t) - (b(t.- 1) + 1)-YTT.) - c.(t - 1). For Method..B it was'

assumed that h(t) = .q.t (the correct function) and t = 1.was

taken as the only required pretest time point. To cAlculate

>47-'
the a

B
(t)'s the formula

5/B
(t) = Y(t) ((S (t)/S (1))*Y(1) + .3.t)Y Y

was used for t=2,3,4,5,6, and 7 . For Method C and lor Olejnik's

method it was agsumed that g(t) = b-(t -1) + 1 And h(t)

apd the pretest time points were taken as being t=1 and t=2.

When'these linear functions are asslimed for g(t) and h(t),

Methogi C and Olejnik's method result in tbe same estimates for

treatment effects. For ease of,later discussi9n,..these estimates
,

will be referred to as the estimates from Olejnik'l-g 'method and'

are given by ao(t) = Y(t)- .Y(l) - (Y(2) = YTi).).(t 1) for

t=3,415,6,7, and 8.

For the exponelltiAl, .7 exponential, and .9 exponential

data gets the estimates of the treatment effects were calculated

'in the following manners. For Method A the time points t=1,2,

3,4,5, and 6 were taken as the pretest time points and the

for-t=2,3,4,5,and 6 were generated using usw, as described in

the previous paragraph. It was then-assumed that.g(t) = b.c
(t-lj

(1 -.b). Since h(t) was set to be identically equal to zer,0

when generating the data sets, h(t) was assumed to be identically

16
',
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equal t6 zero.for Method A an& for all the other methods when
#

simulating the analy, methods for,thexponential data sets.

.The method of leatt squares, using the ZXSSQ subroutine of the

IMSL paCktge, was then employed to estimate b and cjand aA(t)

was calculated using a a(t) = Y(t) [b.2(-1) 4- (.1 IAD).]Tn:.)0

for t=7,8,9,10,11,and 12 . For Method B, t = 1 was used'as the

pretest time point and aB(t) was calculated uting the formula

//., S(t)
a
B
(t) = Y(t)

S cly
Y(1) for t=2,3,4,5,6, and 7. Method C'

is not applicable for the exponential data.sets,since g(t) = .

,

+ (1 - b), which is the corresponding functional form

for the g(t) used to-generate the 'data sets, has two unknown.

constants. For Dlejnik's method the time points of the pretests

were' taken as t=1 and t=2 and the formula a
0
(t) = Y(t) Y(l)

,

i. .

(Y(2) - Y(1)),(t - 1) for t=3,4,5,6,7,and 8 was still iused to
4

estimate thp treatment effects, even though it was realized that

Olejnik's assumption of population mean/growth being linear does

not hold for these data sets.

Results and Conclusions

The easiest way to report the results of this simulation

study is by.the use of tables. 'Tables i through 6- give the

rests for the .5 Linear, .7 Linear, Linear, .5 Exponential,
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h

-

.7 Exponential, and .9 Exponential_data sets. As was mentioned

Insert ,Tabres 1 to 6 Here

.earlier, the observed mean foi each CE'the estimators over the

200"simulated data sets is the same as the observed bias of

these estimates since,the theoretical value of the treatment

effects is zero. wl`his observed bias is reporte4 in each table

in the column,labelled Observed bias. ¶lhe standard deviation

of each of the various estimated treatment etfects over the

200 data sets is an estimate of the standard error of the es-

timators and is feported in the column of each table labelled

standard deviation:m

eef%. It'
best repr.

4,-.....b.....),,,,>w

yielded an es ated treatment effect whose absolute value was

h table the sclumn labelled Percentage
4. 4,

f.times that the indicated method

less than the absolute value of the estimated treatment effects

generated using the other two methods. _Conversely, the column

labelled Percentage worst reports the number of times that the

indicated method yielded an estimated-treatment effect whoee

absolute value was more than the absolute value of the-estimated

treatment effects generated using the other two methods. The"

rows labelled A and B refer to Blumberg andPorter's methods

and the rows labelled 0 refer to Olejnik's method. The starred

values in Tables 4,5, and 6 are crude estimates of the observed
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bias and standard deviationS rather than the actual values. To

keep the computer programming tracitable, values Of estimated

treatment effects which were smaller than -1000 were treated

as missing when the observed bias and standard deviations were

,computed. Hence the observed biases'are even more negative than

indicated and the standard errors are 'even bigger than indicated.

The,reason for including thg Crude estimateg of bias and standard

deviation is that they do give an indicatio4 of the problems

associated with Method A when exponential grOwth is used..
a.

Ffom inspection of Tables 1 through 6 several conclusions

can be drawn. When g(t) and h(t) hre linear (Table's 1,2, and

3), Method.A ieads'to point estimates of.-treatment effects which,

appear to have no noticeable bias while Mpthod B leads.to biased
r

estimates. Olejnik's method theoetically leads to unbiased

estimates and-this was confirmed by the simulation'study. MethOd

B has much.larger standard errors than either Method A or OlejnilOs

method. Further, Method B, for all reliability levels and for

all,posttest time points,-rarely 4ives estimites with-smaller

absolute value (i.e., Percentage best is lower) than either

Method A or Olejnik's method and, in fact, most ofteh, yields

the estimates with the largest absolute value (i.e., Percentage

worst is high). Hence, Method B can be eliminated as a possible

method for analyzing data which follow a linear growth pattern

over time. Therefore, the choice of data analysis methods for

linear growth is reduced tO Method A and Olejnik's method.



Pe

-17-

. Since both Method A and Olejnik's method lead to virtually
\ ..

.
..,

. .

*unpiased estimators, the choice between them must ild made based

:x

on considerations other than bias. When one extends one time
)

point beyond the last pretest for all three reliability levels

the standard error for Olejnik's method is less than the standard

error for Method A,and further, Olejnik's method leads to smaller

absolute values of estimated treatmetn effects a larger peri-

tage of the time. When one extends,two time points beyond the
(2

pretest for all three reliability level the standard errors

and Percentages best and worst are approximately the same for

both methods. When one extends thregfor mbre time points beyond
9

the pretests for all three eliability levels the standard errors

and Percentages worst...are smaller and the Percentages best are

larger for Method A than for Olejnik's method. Hence, for

measures of interest whobe true growth pattern over time is

linear, it appears that.if one wants to extend only one time

point beyond the pretests that Olejnik's method shodld be used.

If one wants to extend two time points beyond, it appears to

be a toss7up. But, Olejni,k's method is much.simplier to use

and hence is recoMmended when extending two time'points beyond

the pretests. When one wants.to extend 3 or more time points ,

beyond the pretests, Method A appears to be the preferrable

method.

When the true growth pattern on the measdre of interest

follows the exponential growth model (Tables,4, 5, and 6).
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Method A can immediately be eliminated as a possible data anal-
.

' ysis method because of its huge standard errors. Hence, when

data follow an exponential growth model the choice of data

analysis mehod is limited to Method and Olejnik's method.

For all 3 reliability levels 4nd when one extends any number

of time points b d the pretest time points Method B appears

to give esti ates of treatment effects with no rioticeable bias

while Olejn-k's method always leads to biased estimators. The,

biasedness f Olejnik's method should not, however, be surprising

since the me hod assumes linear growth and the growth,mOdel'

used to gener te the data-was not linear. When one extends:

'only one or tw time points beyond,the pretest time points

for all three reliability levels Olejnik'S method has smaller

standard errors and Percentages worstland larger PerCentages

best,than does Method'B. Hence, despite being slightly biased,

,Olejnik's method appears to be the preferrable method when

extending only ,one or two time.points beyond the pretests.

. When extending three time points beyond the pretest tim

points the choice of method& is dependent'on the reliability
. .

.of the data. When the reliability is .9, Method B'has a
,

larger Percentage be4 and smaller Percentage worst than

Olejnik's method. further Method B provide-s virtia nbiased

,estimates while Olejnik's method leads to biased estimates.

/I

Hence when extending thr time points beyond the pretests,

-with data of reliability of .9, Method B is the preferred
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method, ev &nigh Olejnik's method has a smaller standard

error. When,the reliaBility.of the data is either .5 or .7

and one is extending three time pointsbeyond the pretests,
-

'.the Percentages best and,worst are almost identical for Method

B and for Olejnik's methdd4 As mentioned earlier, Method B

leads to virtually unbiased estimates while Olejnik's method

leads to biased estimates. *However, tbe standard errors

associated with Olejnik's method are smaller. So, when the

reliability of the data is -either .5 or .7 and bne is extending

three time points beyond the pritests, data analysts must

decide whether they want*unbiasednessi in,which case Method

B should be chosenor smaller standard errors, in which case

Olejnik's method should be chosen. When extending-four or more
.

time points beyond the pretests Method B becomes the recommended

method for all three reliability levels. The reason for this-
,

recommendation is that Method B remains virtually unbiased0
While tbe bias inherent is Olejnik's method becomes larger as

the data is extended more and more time.points beyond the

pretests. Further, the Per ntages best are larger and the

,

Percentages worst aresma1 for Mdtliod B than tor Olejnik's

method.

Limitations and Directions for Further Research

*

This siMullation study was, carridd out using only'tWJO.fo
/-

tms,

of natural growth models--a linear growth model and ah exponential

' ZIP
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growth model. Further, for each of the two models only one set

of parameters vas used to generate the data. Also, the assump-

%

tion of equdl reliability across time was made. Hence, the

results reported in this paper are very limited. On a positive

note, however, the results of thips simulation study show that

Blumberg and Porter's methods and Olejnik's method are viable

data analysis methods. This is iMportant because these methods

are not well known and hence have rarely been used in actual

data analysis situations. Because of the limitations just

citeq, much further research needs to be done. First, for

the functional forms studied here, parameter values other than

those used in this'study should be investigated. Second,

functional forms other than linear or exponential should be

studied. Third, constraints on the errors of measurement

other-tjahn that of equal reliability should.be included in

future simulation studies. Finally, this study only concerned

the point estimation of treatmeht effects. Both Blumberg and

Porter (Blumberg, 1982a; Blumberg, 1982b; Blumberg & Porter,

1982) and, 01ejnik (1977) have develdped interval estimation

and hypothesis testing procedures based on their point esti-

mation procedures. The utility of their interval estimation

and hypothesis testing procedures still needs to be studied.

')
t.1
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Table 1

Results for .5 Linear

Number of time
points beyond
last pretest Method-

/

, Observed
bias

..

Standard
deviation

Percentage
best

Percentgge
worst

A 1 074 0.937 ,35.5 % 21 %

1 B . 96 2.547 ,11.5 69

0 - . 14 0.738 53 10

.

,

A .064 1.0/3
if

44.5 13

2 B . .308 3.490 11.5 71.5

0 -.005 1.098 44 15.5

A .131 1.219 43 .'", 13.5

3 B , .620 '5.176 14.5t - 68.5

0- .108 1.543 42.5, 18

,
, ...

A .001 1.375 50.5 9

, B .546 6..452 10.5 76.5

_

.

0

A

b.,

-.053

-.182

2.015

11.479

39

54.5

14.5

7.5

5 B 1.002 7.972 '8 74

,
0 ;

,

A

.094

..,

.027

2.293

1

1.677

37.5.

56.5

18.5

7.5

6 B . 1.034 8.653 6.5. 77.5

0 .087. 2.657 ,37 15



Table 2

Results for .7 Linear

Number of time
points beyorkd
last pretest

.

Method
Observed

bias
Standard
deviation

.

Percentage
- best

Percentage
.worit

.

.

,

1 1
2

,

3.

4

5
/

-

6

.

.

.

A

. B

0
.

A

B

0

A

B

0

..; ..1

A

B

0

A

B

0

A

B

°

.

.049,

.227

.009
.

.042

.223

-.003

'.086

.486 ,

.070

.,

.001

.455 .

-.034

-.119

.728

.062

.018

- .887

.057

,

0.613

1.983

0.483

0.703

2.740

0.719
.

..

0.798

4.035.

1.010
.

0:906

5.122

1.319

0.968

6.180

1.501

1.098

6.773

1.739

...

.

37.5

8.5

54

45.5

9-

455

48

9

43

53.5

7.5

39-

55.5

6

38.5

53.5

10

36.5

%

-

-

.

6

..,

.

. .80.5

1.5

76

9

10

7.7

13
.

9.5

75.5

15

7.5

81

11.5

,6

,.

81.5"

12,5

7.5

,

12

%

.

,

,

0
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Table 3

Resdlts for .9 Linear

...

Number of time
points beyond
last pretest Method

Observed
bias

Standard
deviation

Percentage
best

Percentage
worsts.

A .,025 0.312' 37.5 %. 16' A
...

1 B .122
,-

-1.145 6.5 75.5
.

0- .005 0.246 56, . 8.5

.
ii.

.

.
.

A .021 0.358
,

, 46 8.5

2 B .102 1.619' 8.5 80.5
.

0 -.002 0.366 45.5 11

,
.

...

,

,

.044 .0.406 49 10 -

. 3 B .263 2.338:.' 6 79:5

0 :036 0.514, 1' 45' 10.5

,
.

A .000 / 0.458 55. 5.5

4 B .252 3.030 4.5 88

..,)

0 -.018 0:672 4'0.5 6.5

.)-

A -.061 0.493 54- 4.5

5 B , :349 356Q .. 6 84 .-

:.031 0.764 4.0 11.5

,
.

..

A .009 . 0.559 56.5 5.5

6 13 .532 3.02 6 84

0 0.886 37.5 10.5..029 .

.

26

. 4

-

1

t.,

,
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Table 4

Results'for .5 Expbnential

'Number of time
points beyond
last pretest . Method

Observed
bias

Standard'
deviation

Percentage
- best

Percentage
worst

,

.

.

.

.

,

.

s

.

1

-

4

p

5.

-

6

.

,

.

A

. B

0

A

B

6

.

A

. B

_
0

A

-B

. o

_
A

B

0

A

B

0

.

-11.562

.- -10.064

, 0.153

.*
-57.052.

.0.170
. .

0.455
.

*
-72-.352

-0.098

1.037

.*
-121.758

-a.,255

.1.70a .

*
,-178.686

-0.167 .1#

2.834

.

*
-218.836

-0.214

4.225

55.541

1.226

0.561

*
388;770

1.487

0.855

429.307*

1.750.

1.20a

467.494*

.1.99.1..-...

1.582 .

,
*

766.859

.2.096

1.8.45

*
956.396

3.092

, 2.162

.

..,

.

,

3

36.5

60.5

4

38.5'

37.5

3

46.5

50.5

-1'

. .,.

51:5

38.5

4.5

71.5

24
.

.5

'75.5

19,5

%

.

.

"-'

.

.

..'

.

.

.

.

86.5

11

2..5

8g

7

5
.

.

AR
7.5

3.5

87
,

5

8

86

4

10

86

35
10.5

%
.

,

.

,

.

.

yr,

29 .
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Table 5

Results for .7 Exponential

, -

Number of time
points beyond
last pretest

'

Method
Observed

. bias
Standard
deviation-

PeCentage
best

-

Percentage
worst

A -4.993 27.927 .5 %_ 85.5 i

1 B -0.0f45 0.985 28 11.5

0 0.149 0.367 68.5 3
.

* 1;

-
.

A -138.164. 963.686 5.5 85.5

2 B -0.133 r.199
.

36 12

,

0 0.453

*

0.560

* .

58.5. 2.5

A -57.992 664.887 4 87.5

3 B -0.062 1.402 48 8
. ,

0 1-.0b9 0.788 :48
,

4.5

* *

A -46.826 366.526 4 90.5

4 . B -0.166 1.569 61 2.5

0 1.702 1.037 35 7

. ,

*

.

*.
A -74.629 438.340 5.5 88.5

5 B -0:095 1.697 80 2

0 2.804 1.212
t.

14.5 9.5 4

A
*

-83.196 .

*
407.534 4.5

.

86.5

6 B -0.093 2.418 85 1

,
0 4.194 1..423 10.5 12.5

.

4.-

,

ft



Table 6

Results for".9 Exponential

Number of tiMe
points beyond,
last pretest' Metliod

,

Observed
bias

Standard
deviation

Percentage
best

Percentage
worst

A' -3.011 21.806 5:5 % 79 %
1 - B -0.016 0.598 23 19'

0.144. 0.187 -71.5 2

,

*
*

, A -117.414 811.526 7 85

- B -6...070 0.721 42 9
.

0 0.983 0.403 51 6'

.

,
* .*

A -3.878 27.861 - 8 83:5

3 b -0.016 --'0.84,3 '64.5 -6

0 0.983 0.403 10.5
,

27.5

* *

,

A -15.978 123.460 5.5 85

4 B -0.066 0.939 '' 86 1 .

,

0 1.704 0.532 8:5 14

. * - * 17-A -62.224 560.774 5.5 85

5 B -0.052 / 1,029 91.5 0.5

0 2.776 0.626 3 14.5
i

*

'6

A -67.189
.

409.01;7* 5- 84.5
,

- B 0.01'4 1.405 93.5 0-

0 4.165 0.742 1..5 15.5

420 31


